Model-based compressive sensing with Earth Mover’s Distance constraints

نویسندگان

  • Ludwig Schmidt
  • Piotr Indyk
  • Leslie A. Kolodziejski
چکیده

In compressive sensing, we want to recover a k-sparse signal x ∈ R from linear measurements of the form y = Φx, where Φ ∈ Rm×n describes the measurement process. Standard results in compressive sensing show that it is possible to exactly recover the signal x from only m = O(k log n k ) measurements for certain types of matrices. Model-based compressive sensing reduces the number of measurements even further by limiting the supports of x to a subset of the ( n k ) possible supports. Such a family of supports is called a structured sparsity model. In this thesis, we introduce a structured sparsity model for two-dimensional signals that have similar support in neighboring columns. We quantify the change in support between neighboring columns with the Earth Mover’s Distance (EMD), which measures both how many elements of the support change and how far the supported elements move. We prove that for a reasonable limit on the EMD between adjacent columns, we can recover signals in our model from only O(k log log k w ) measurements, where w is the width of the signal. This is an asymptotic improvement over the O(k log n k ) bound in standard compressive sensing. While developing the algorithmic tools for our proposed structured sparsity model, we also extend the model-based compressed sensing framework. In order to use a structured sparsity model in compressive sensing, we need a model projection algorithm that, given an arbitrary signal x, returns the best approximation in the model. We relax this constraint and develop a variant of IHT, an existing sparse recovery algorithm, that works with approximate model projection algorithms. Thesis Supervisor: Piotr Indyk Title: Professor of Computer Science and Engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compressive Parameter Estimation with Earth Mover’s Distance via K-Median Clustering

In recent years, sparsity and compressive sensing have attracted significant attention in parameter estimation tasks, including frequency estimation, delay estimation, and localization. Parametric dictionaries collect observations for a sampling of the parameter space and can yield sparse representations for the signals of interest when the sampling is su ciently dense. While this dense samplin...

متن کامل

The Constrained Earth Mover Distance Model, with Applications to Compressive Sensing

Sparse signal representations have emerged as powerful tools in signal processing theory and applications, and serve as the basis of the now-popular field of compressive sensing (CS). However, several practical signal ensembles exhibit additional, richer structure beyond mere sparsity. Our particular focus in this paper is on signals and images where, owing to physical constraints, the position...

متن کامل

Fast Algorithms for Earth Mover’s Distance Based on Optimal Transport and L1 Type Regularization I

We propose a new algorithm to approximate the Earth Mover’s distance (EMD). Our main idea is motivated by the theory of optimal transport, in which EMD can be reformulated as a familiar homogeneous degree 1 regularized minimization. The new minimization problem is very similar to problems which have been solved in the fields of compressed sensing and image processing, where several fast methods...

متن کامل

Compressive Parameter Estimation with Emd

COMPRESSIVE PARAMETER ESTIMATION WITH EMD FEBRUARY 2014 DIAN MO B.Sc., BEIHANG UNIVERSITY M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Marco F. Duarte In recent years, sparsity and compressive sensing have attracted significant attention in parameter estimation tasks, including frequency estimation, delay estimation, and localization. Parametric dictionaries collect si...

متن کامل

Compressive parameter estimation via K-median clustering

In recent years, compressive sensing (CS) has attracted significant attention in parameter estimation tasks, including frequency estimation, time delay estimation, and localization. In order to use CS in parameter estimation, parametric dictionaries (PDs) collect observations for a sampling of the parameter space and yield sparse representations for signals of interest when the sampling is suff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013